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Abstract

Corals create complex reef structures that provide both habitat and food for many
fish species. Because of numerous natural and anthropogenic threats, many coral
reefs are currently being degraded, endangering the fish assemblages they support.
Coral reef restoration, an active ecological management tool, may help reverse some
of the current trends in reef degradation through the transplantation of stony corals.
Although restoration techniques have been extensively reviewed in relation to coral
survival, our understanding of the effects of adding live coral cover and complexity
on fishes is in its infancy with a lack of scientifically validated research. This study
reviews the limited data on reef restoration and fish assemblages, and complements
this with the more extensive understanding of complex interactions between natural
reefs and fishes and how this might inform restoration efforts. It also discusses which
key fish species or functional groups may promote, facilitate or inhibit restoration
efforts and, in turn, how restoration efforts can be optimised to enhance coral fish
assemblages. By highlighting critical knowledge gaps in relation to fishes and restora-
tion interactions, the study aims to stimulate research into the role of reef fishes in
restoration projects. A greater understanding of the functional roles of reef fishes
would also help inform whether restoration projects can return fish assemblages to
their natural compositions or whether alternative species compositions develop, and
over what timeframe. Although alleviation of local and global reef stressors remains a
priority, reef restoration is an important tool; an increased understanding of the inter-
actions between replanted corals and the fishes they support is critical for ensuring

its success for people and nature.
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1 | INTRODUCTION

Coral reefs provide critical ecosystem services, including fisheries,
coastal protection and tourist income, to millions of people (Bar-
bier, 2017; De Groot et al., 2012; Woodhead et al., 2019). Despite
their global importance, protection is currently inadequate (Mora
et al., 2006; Pressey et al., 2015; Cox et al., 2017), and consequently
key indicators of reef health, such as coral cover, are declining (Bruno
& Selig, 2007; Gardner et al., 2003; Hughes et al., 2017; Pandolfi
et al., 2003). This reef degradation is driven by anthropogenic impacts,
including overfishing, global climate change, coral disease, sedimenta-
tion, extensive coastal development, introduction of invasive species
and the release of pollutants (Hoegh-Guldberg et al., 2017; Hughes
et al., 2003). The loss of coral cover and complexity caused by these
stressors is affecting the ecosystem services provided by reefs (Cesar
et al., 2003; Pratchett et al., 2014). Global threats require international
action, but managing local threats is also critical (Kennedy et al., 2013).
Although establishing marine reserves is perhaps the most commonly
used technique to address local reef degradation, it has been
suggested that a wider range of methods are required to manage trop-
ical coastal resources and to maintain reef processes (Allison
et al., 1998; Anthony et al., 2015; Aswani et al, 2015; Rogers
et al., 2014). Reef restoration is one of these potential tools to aug-
ment other management methods (Lirman & Schopmeyer, 2016).

The terms reef “restoration” and “rehabilitation” are often used
interchangeably in the coral reef literature. Restoration is generally
defined as bringing a degraded ecosystem back as close as possible to
its original natural state, whereas rehabilitation refers to situations
where the functional and structural properties of an ecosystem are
replaced, not necessarily in the same manner as the original state
(Edwards & Gomez, 2007). In most cases it is likely that although res-
toration may be desired, rehabilitation is the most achievable out-
come, and a shift in management goals from a return to original
species composition to the need to maintain ecological functions and
ecosystem services of reefs has been suggested (Graham et al., 2014;
Hughes et al., 2017). Effort may not always be focused on restoring
original reefs, but sometimes creating new habitat for reef communi-
ties. There are many examples of entirely artificial reefs (e.g., “reef
balls” or sunken ships), where the main focus is on the deployment of
artificial structures, usually in areas where reefs did not previously
exist or where they have been entirely degraded away, which can
then be colonised by marine organisms (Baine, 2001). Although the
authors draw on some of the artificial reef literature, the main focus
of this review is specifically on how the restoration of existing coral
reefs benefits, and is benefitted by, fishes, while acknowledging the
potential addition of artificial structures being deployed as part of the
process.

The most widespread method of coral reef restoration involves
the introduction and distribution of nursery-reared or wild-collected
coral fragments in areas previously affected by human actions or
adverse environmental conditions (Johnson et al., 2011; McLeod
et al, 2019a; Precht, 2006). Coral fragments are either directly
transplanted to the substrate (Forrester et al., 2012; Ladd et al., 2019;

Lohr et al., 2017) or may be attached to artificial structures which
have proven successful in environments dominated by mobile sub-
strata such as coral rubble (Clark & Edwards, 1999; Fadli et al., 2012;
Williams et al., 2019). By outplanting corals, managers aim to enhance
ecological processes and re-create self-sustaining naturally growing
habitats due to the ability of corals to colonise and build complex
structures (Edwards, 2010; Edwards & Gomez, 2007). In some
instances, other techniques may be used such as the culture and
release of coral larvae or juveniles (Chamberland et al., 2017; dela
Cruz & Harrison, 2017; Heyward et al., 2002), the transplantation of
entire mature coral colonies (Mbije et al., 2013; McLeod et al., 2019b;
Schopmeyer & Lirman, 2015) or other organisms such as giant clams
(Cabaitan et al., 2008), coral gardening including an intermediate coral
nursery phase (Bongiorni et al., 2011; Frias-Torres et al., 2015;
Horoszowski-Fridman et al, 2015), algal removal (McClanahan
et al., 1999, 2000, 2001) or even the deployment of artificial struc-
tures alone to provide a stable substrate for future colonisation
(Jayanthi et al., 2020; Ng et al., 2017; Thanner et al., 2006). A descrip-
tion of these coral reef restoration methods can be found in Bostrém-
Einarsson et al. (2020), forming the basis for examining the relation-
ship between these techniques and fish assemblages in this review.

Although restored reefs remain susceptible to global influences
such as climate change, disease and pollution, reef restoration may be
the last resort for immediate reinforcement of critical ecological func-
tions and services for reefs that have degraded significantly and may
not have sufficient resilience to recover (Rinkevich, 2008), or where
there is a desire to speed up recovery. For example, there is evidence
that reef restoration methods can be used to manage tropical reefs
damaged by destructive fishing practices (Fox et al., 2005; Raymundo
et al., 2007); when sites have been degraded to the state of rubble
fields, there is usually little chance for natural recovery without human
intervention (Fox et al., 2003). This loss of benthic structure can have
devastating consequences not only on natural fish populations but
also on the livelihoods of coastal communities. Millions of people,
mainly in developing countries, are dependent on tropical fisheries for
income and protein needs (Cinner et al, 2009). Managing reefs
through the implementation of restoration projects may help protect
and enhance those ecosystem services for the benefit of coastal peo-
ple (Mumby & Steneck, 2008; Rogers et al., 2015).

It is clear that reefs provide multiple benefits for fishes, the main
ones being the provision of food, habitat and settlement substrate
(Graham & Nash, 2013; Gratwicke & Speight, 2005; Luckhurst &
Luckhurst, 1978). For example, some reef-associated fishes rely spe-
cifically on live coral, and many more species benefit from structural
complexity provided by the reef environment (Coker et al., 2014).
Consequently, fishes are likely to benefit from restoration, and this is
often an implicit or explicit reason for restoring habitat. The impor-
tance of fishes in benthic dynamics is also well documented, particu-
larly herbivorous species aiding coral growth and survival by
controlling macroalgal cover (Bellwood et al., 2004; Hughes et al., 2007;
Mumby et al., 2006a). Nonetheless, although the importance of the
interactions between reef fishes and their habitat is well established,

reef restoration research has focused almost exclusively on coral
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survival (Lirman & Schopmeyer, 2016; Young et al., 2012) with
research into the effects of adding live coral cover and complexity on
fishes in its infancy. This review has identified studies which have
monitored effects of coral reef restoration on fishes and vice versa.
Following searches conducted with the keywords listed in Table S1
and excluding studies where the main aims did not concentrate on
restoring coral reef ecosystems, 38 publications are summarised in
Table 1. Although a few of these restoration publications have
assessed fish populations directly, fishes were more commonly inves-
tigated as secondary qualitative observations. Throughout this review
the authors consider the bidirectional interactions between fishes and
restored reefs (Figure 1), and how this is governed by coral cover and
reef complexity and the various functions of fishes on restored reefs.
Furthermore, key research questions to help inform coral reef restora-

tion are identified as restoration programmes intensify globally.

2 | THE ROLE OF HABITAT AND SEASCAPE
COMPLEXITY

There is a general consensus that the availability of complex coral reef
habitat is a prerequisite to abundant and diverse coral reef fish assem-
blages (Luckhurst & Luckhurst, 1978; Bell & Galzin, 1984; Gratwicke
& Speight, 2005; Graham & Nash, 2013). Many reef fishes are depen-
dent on complex corals for habitat, shelter from predators and water
movement, foraging, spawning and nesting (Almany, 2004a; Caley &
St John, 1996; Johansen et al., 2008; Robertson & Sheldon, 1979).
Consequently, the global decline of live corals and associated decrease
in reef rugosity has affected resident fish populations, and coral reef
fisheries (Alvarez-Filip et al., 2009; Jones et al., 2004; Pratchett
et al., 2014; Sano et al., 1984). Restoration may increase coral cover
and habitat complexity on a reef within a relatively short time period
with the use of fast-growing coral species, which otherwise would take
decades to re-establish naturally (Williams et al., 2019). For instance,
the reported median length of restoration projects is 12 months,
suggesting that coral reef restoration may have rapid effects on coral
ecosystems (Bostrém-Einarsson et al., 2020). Nonetheless, although
active management methods such as reef restoration have the poten-
tial to increase coral cover and fish stocks more quickly compared to
some other management tools (Rinkevich, 2005, 2008), reported
recovery time frames currently vary from months to decades and
appear to be context-dependent (Table 1).

Coral reef restoration can provide shelter for fishes either
between coral fragments and/or under constructed structures to
which the coral fragments are attached (Clark & Edwards, 1999; Fadli
et al., 2012). Provision of shelter allows reef fishes to avoid predation
(Shulman, 1985), and shelter for herbivorous fishes may in turn help
control algal overgrowth on restoration structures, as fish presence
has been linked to reduced cleaning maintenance on introduced struc-
tures such as coral nurseries (Frias-Torres et al., 2015; Frias-Torres &
van de Geer, 2015; see the section “The Role of Herbivorous Fishes”).
In one of the few studies that have quantitatively investigated the

effects of coral transplantation on fish colonisation, populations were
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surveyed at selected treatment and non-restored degraded control
plots prior to transplantation of staghorn coral Acropora cervicornis
fragments, and then again following restoration (Opel et al., 2017).
Fish numbers and diversity were significantly greater in restored plots
when compared to control plots within a week of the transplantation,
demonstrating the fast rate of fish recolonisation, with the benthic
structure as the main predictor of change. By the end of the study,
experimental sites had no resemblance to one another with regard to
fish assemblages present, as each experimental site attracted unique
and distinct populations. Therefore, although initial assemblages on
restored reefs may reflect recruitment from adjacent reefs and original
fish communities, restored sites may also attract new species and cre-
ate novel fish assemblages. There is, however, mixed evidence that
the artificial addition of live coral cover impacts coral fish populations.
Whereas other studies have reported increases in fish densities and
species richness due to coral transplantation (Cabaitan et al., 2008;
Clark & Edwards, 1999; Hudson et al, 1989; Lecchini, 2003;
Yap, 2009), a recent study by Ladd et al. (2019) investigating
established restoration sites of varying coral transplant densities and
maturity revealed little impact of the interventions on fish communi-
ties, with the exception of coral-associated damselfishes. As quantita-
tive studies of the effect of coral restoration on fish assemblages are
still scarce, with fishes rarely the main focus of restoration publica-
tions (Table 1), further research is clearly needed.

Different restoration strategies and designs can influence important
ecological processes on reefs. For example, in a patch reef study where
low complexity and high complexity corals were transplanted, resident
reef predators chocolate grouper (Cephalopholis boenak) (Bloch 1790)
and brown dottyback (Pseudochromis fuscus) Muiller & Troschel 1849
had more successful strikes, with prey mortality increasing when low
complexity corals were transplanted (Beukers & Jones, 1998). Trans-
plantation of high complexity corals provided greater refuge opportu-
nity for the focal prey fish, juvenile lemon damsel (Pomacentrus
moluccensis) Bleeker 1853. Nonetheless, the increased complexity asso-
ciated with restoration may still be beneficial to predatory fishes in the
longer term. If prey fishes survive capture by escaping into reef refuges,
this enhances reef fish productivity, which in turn increases prey fish
numbers (Rogers et al., 2014). As prey fish populations rise, some indi-
viduals are excluded from refuges through competition, thus exposing
them to predators (Holbrook & Schmitt, 2002). The impact of habitat
complexity on predators will also vary greatly depending on predatory
strategies. Ambush predators may profit from increased structure com-
pared to roaming predators (Almany, 2004b; Rogers et al., 2018). Resto-
ration projects may provide prey shelters as well as predation
opportunities by promoting complexity at different spatial scales. For
example, creating different-sized holes within artificial reefs may benefit
both prey and predators (Bohnsack, 1991). Future research should
examine how changes in multi-scale coral complexity associated with
coral transplantations affect predator-prey interactions (Table 2),
and include both consumptive and non-consumptive (“fear”) effects
(Mitchell & Harborne, 2020).

Although artificial reefs can be different from reefs restored

through transplantation, comparisons are still insightful when habitat
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provision is considered (Bohnsack & Sutherland, 1985). In several

studies deploying artificial reefs consisting of concrete blocks, the
complexity of the blocks including the presence and size of holes
within the structures had a significant effect on colonising fish assem-
blages (Hixon & Beets, 1989; Hixon & Beets, 1993; Sherman
et al., 2002). Vertical topography has also been shown to have a sig-
nificant effect on fish assemblages, with vertical jetty pillars
experiencing much higher recruitment than low-relief natural reefs in
the Red Sea (Rilov & Benayahu, 2000). Artificial reef design and the
presence of holes and cracks providing protection for prey also seem
to be particularly important in defining predatory fish assemblages
(Da Rocha et al., 2015; Gregalis et al., 2009; Spieler et al., 2001). For
example, in an experimental study where artificial reefs containing
varying shelter sizes were deployed, smaller shelters were effective in
excluding large predators, whereas the presence of larger holes
increased the abundance of large piscivores and indirectly reduced
prey numbers (Hixon & Beets, 1989). This work provides potential
guidance for the spacing and coral growth forms that might most ben-
efit fishes, along with a recognition that complexity occurs at multiple
scales (Harborne et al., 2012b).

The provision of shade in addition to physical shelter provided by
reef crevices and holes is also likely to be a contributing factor in
attracting fish assemblages to restored reefs (Spieler et al., 2001).
Increasing complexity by reintroducing intricate and table-shaped
corals may produce areas of shade in which juvenile and nocturnal
coral fishes can take cover (Hair et al., 1994; Kerry & Bellwood, 2016;
Sheppard, 1981; Stimson, 1985). Provision of shade may effectively
conceal vulnerable fishes while allowing them to better spot preda-
tory threats (Helfman, 1981), and shade may provide protection from
the damaging effects of UV light (Kerry & Bellwood, 2015b). Kerry
and Bellwood (2012) investigated fish interactions with different coral
morphologies and observed a significant preference of large fishes for

tabular-shaped corals with opaque canopies when compared to

FIGURE 1 Summary of
interactions between fishes and their
restored coral reef habitat. Benefits for
fishes include the introduction of
complexity for reef-associated fish
species that provides shelter for reef-
associated species either under
artificial structures or within coral
transplants (1), which is enhanced by
providing transplant species with a
range of morphologies, densities and
shade-producing properties (2). Fishes
will also benefit from increased food
sources including coral (2) and other
fishes (3). Through these trophic
interactions, fishes play positive roles
in restoration projects including
herbivory to control algae growth (4)
and provision of nutrients for coral
growth (5), but may also have negative
impacts through coral predation (6),
and damselfish territories (7)

branching and massive colonies. In a later experimental study (Kerry &
Bellwood, 2015a), the exclusion of fishes from large tabular corals sig-
nificantly altered fish assemblages despite tabular corals only occupy-
ing a small percentage of the total benthic cover. If shade-providing
corals act as keystone structures on healthy reefs, then it becomes
important to consider a selection of coral species and morphologies
for transplantation for attracting diverse and abundant fish assem-
blages (Table 2; Edwards, 2010; Shaver & Silliman, 2017). For exam-
ple, often branching coral forms are chosen for transplantation
because of their faster growth and survivorship (Barton et al., 2017;
Epstein et al., 2001) which, while increasing overall complexity, may
limit the provision of shade. Different fish species are likely to be
attracted to separate coral morphologies, and although slow-growing
massive species tend to be less attractive to fishes, they are less likely
to succumb to disease and bleaching (McCowan et al., 2012). Shade
may also be provided by any artificial structures to which corals are
attached. Currently, the understanding of the impact of shade on vari-
ous coral reef fishes is incomplete, and in addition, no research has
attempted to evaluate the benefits of shade in the context of coral
reef restoration (Table 1), despite the importance of specific physical
structures in driving fish assemblages.

Coral density and connectivity between coral fragments may also
significantly shape resident fish assemblages as clumping of coral col-
onies may be particularly appealing to aggregating fishes (Edwards &
Gomez, 2007; Griffin et al, 2015; Huntington et al., 2017; Ladd
et al., 2016). Ensuring individual fragments or colonies are not too iso-
lated may be vital in supporting prey fish assemblages as large open
spaces are likely to increase predator densities (Stewart &
Jones, 2001). Whereas outplanting corals at high density has been
linked with increased fish abundance and biomass (dela Cruz
et al., 2014), densely packed corals can exclude herbivores and pro-
mote algal growth between fragments (Shafir et al., 2006). Rubble-
dwelling fishes, such as certain Pinguipedidae and Gobiidae species,



SERAPHIM ET AL.

- FISHBIOLOG Y 1ot @ Nl

TABLE 2 Summary of the interactions between natural reefs and fishes and how this information can be used to optimise the recovery of fish

assemblages in reef restoration efforts

Coral reef concepts

Introducing habitat
complexity
invertebrates, reducing predatory success.

Increased refuges may enhance prey fish numbers

providing more opportunities for predators. Small
holes provide shelter for prey; large holes increase

predator abundance.

Shade-producing corals offer shelter to juvenile and
nocturnal fishes as well as protection from UV light.
Tabular corals shape fish assemblages even when
occupying a small proportion of total coral cover.

Connectivity with other ecosystems will greatly affect

fish abundance and biomass.

Role of herbivorous
fishes

Algae competes with corals for space and will

colonies that are vulnerable or damaged.

Grazing may be enhanced with various management

practices such as fishing reductions.

Territorial damselfishes can have deleterious effects on
vulnerable coral colonies by biting coral polyps to
promote algal growth. They are particularly attracted

to fast-growing branching coral colonies.

Nutrient provision

these nutrients more effectively.

Fish farms may provide a source of natural enrichment.

Corallivory
accidental grazing, and corallivores will target
juvenile corals through predation.

Corallivores may be selective in their coral preferences.
Nevertheless, the positive effect of the cropping of

algae by herbivores appears to outweigh the
negative effect of occasional predation by
herbivorous and corallivorous fishes.

Predatory fishes
coral reef ecosystems and supporting fisheries.

Marine-protected areas and reserves, even of small size,
can have significant positive impacts on predatory

species through the prevention of fishing activity.

often recruit to reefs post-disturbance and may be heavily impacted
by subsequent increases in coral cover associated with restoration
(Coker et al., 2012; Opel et al., 2017; Syms & Jones, 2000). Further-
more, artificial patch reefs with small-scale isolation have observed
increased fish abundance, species richness and juvenile recruitment

when compared to continuous reefs (Belmaker et al, 2011;

High complexity corals provide shelter opportunities
for prey items, e.g., juvenile fishes, cryptic fishes and

opportunistically overgrow, shade or abrade coral

Aggregating fishes supply nutrient-limited corals with
added excretory products. Coral morphologies that
promote low water flow between branches retain

Herbivores may induce coral recruit mortality through

Reef restoration recommendations

Restoration must increase complexity, providing shelter to support
fish communities. This can be incorporated through man-made
structures and/or by the transplantation of intricate corals.

Varying levels of complexity should be introduced; high complexity
will provide shelter for prey fishes, but inclusion of gaps and
moderate coral transplantation densities will ensure large-bodied
predator success.

The provision of shade needs to be included when designing
restoration structures. Some shade-producing tabular corals should
be introduced in addition to the more popular branching corals.

Where possible, reef restoration projects should be set up close to
mangrove and seagrass habitats to enhance fish populations
through provision of nursery and foraging areas.

Surveys to ensure sufficient herbivorous fishes are present are
recommended prior to restoration. Removal of macroalgae may be
necessary during initial stages while healthy grazing populations of
fishes establish.

Where possible, restoration projects should be located in marine
reserves or at locations supporting a high biomass and diversity of
grazers from various functional groups.

Surveys of territorial damselfish and their known predators should be
carried out prior to restoration to determine whether damselfish
removal is required. A variety of coral morphologies should be
transplanted to help minimise damselfish effects.

In line with transplantation of varying coral morphologies, corals with
closed morphologies should be included to enhance nutrient
absorption and coral growth.

Consideration should be given to setting up coral nurseries near fish
farms as nutrients may stimulate fragment growth. Nonetheless, this
needs to be assessed alongside surveys of herbivorous fish
populations, as algal overgrowth remains one of the main concerns
on nutrient-enriched, coral-poor reef restoration sites.

Where corallivory is a problem, rearing juvenile corals to larger sizes
ex-situ prior to transplantation is recommended to decrease size-
dependent mortality.

Surveys to establish the presence of corallivorous fishes are
recommended prior to restoration. Outplanting a range of coral
species and morphologies could minimise the impact of
corallivores.

Predatory fishes have a vital role in maintaining healthy Attraction of predator assemblages should be a key aim of restoration

projects. Although it may be difficult to identify specific
mechanisms for this at the start of a restoration project, surveys of
predatory fish populations over restoration time are recommended
to inform this aim.

Where possible, setting up coral restoration projects within
established protected areas will increase their likelihood of success
due to the protection of predatory species.

Schroeder, 1987). Patch reef designs may, therefore, be preferable for
reef restoration, providing a range of habitats and encouraging the
recruitment of both coral and rubble-associated species. In addition,
connectivity with adjacent ecosystems on a larger spatial scale is an
important consideration as many coral fishes migrate between differ-

ent habitats with the presence of nearby resources, such as nursery
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habitats, heavily impacting fish biomass (Mumby et al., 2004,
Nagelkerken et al., 2000; Nagelkerken et al., 2002; Ogden &
Quinn, 1984). For example, juvenile fishes may have entirely different
refuge needs to adults and could greatly benefit from the presence of
mangrove or seagrass nursery and foraging habitats near restoration
sites. It is therefore essential that an integrated planning approach is
taken at the design stage of restoration projects to maximise benefits
to fish by considering small- to large-scale physical characteristics of
the habitat and seascape (Table 2).

21 | Cryptic species

Although the need to provide shelter for ecologically and economi-
cally important fishes by using appropriate restoration design is well
known, cryptic fishes are rarely considered in the context of reef res-
toration (Table 1). Though not primary targets of restoration,
cryptobenthic fishes, or more commonly termed “cryptic” fishes, have
an important role in reef assemblages and significantly contribute to
fish abundance and diversity but are understudied (Ahmadia
et al, 2012; Brandl et al., 2018; Depczynski & Bellwood, 2004;
Harborne et al., 2012a). As they constitute common prey for piscivo-
rous primary and secondary consumers and supply a substantial
amount of energy to higher trophic levels (Brandl et al., 2018, 2019;
Depczynski & Bellwood, 2003), it is important that they are consid-
ered in the context of rebuilding food webs on restored sites. Cryptic
species differ from more conspicuous species; they are small (<5 cm),
have limited mobility and predominantly live in well-protected cavities
formed within coral reef structures (Depczynski & Bellwood, 2003).
Consequently they typically have high site fidelity and are affected by
a range of physical characteristics, including habitat complexity and
shelter quality (Depczynski & Bellwood, 2004; Kobluk, 1988;
Prochazka, 1998; Syms, 1995; Willis & Anderson, 2003). Cryptic spe-
cies specialising in living within coral habitats are likely to be positively
affected by the increase in structural complexity and live coral cover
through the transplantation of stony corals, and the introduction of
structures to which they are attached (Jaap, 2000). Indeed, the intro-
duction of artificial reefs has previously increased the abundance of
small fishes such as cardinalfishes and gobies (Clark & Edwards, 1999;
Thanner et al., 2006). Without a fuller understanding of the impact of
reef degradation on cryptic species, any potential positive effects of
restoration on this group of fish species will be difficult to manage or
monitor. Further research is critical to explore cryptic fish population
structures across different restoration designs, and how they may aid

the recolonisation of higher trophic species.

3 | THE ROLE OF HERBIVOROUS FISHES

Herbivorous fishes are vital for reef restoration programmes; suffi-
cient grazing is a necessity to prevent algae from smothering coral
fragments and outcompeting coral transplants, particularly during the

early stages of restoration (Edwards, 2010; Edwards & Gomez, 2007).

Macroalgae rarely overgrow thriving coral colonies. Nonetheless,
when coral colonies are already damaged or dead, algae can colonise
in an opportunistic manner (McCook et al., 2001), overgrow coral
recruits (Box & Mumby, 2007), and algae may also act as disease vec-
tors (Nugues et al., 2004), so that the control of macroalgal cover by
grazing fishes is vital. Small coral fragments are particularly susceptible
to sub-lethal effects from contact with macroalgae (Ferrari et al., 2012).
This susceptibility is particularly relevant for restored coral colonies
where coral fragments may be small and are already stressed due to
the transplantation process. Research conducted at several restora-
tion sites within the Florida reef tract found high cover of macroalgae
to be a major threat to the survival of A. cervicornis fragments (van
Woesik et al., 2018). Indeed, reef restoration is not recommended in
areas where grazing populations of fishes and/or invertebrates are
scarce as this would prevent restored corals from recruiting in the
future, therefore rendering the exercise futile (Edwards, 2010). Sur-
veys of existing fish populations at proposed sites are, therefore,
essential (Edwards & Gomez, 2007), and the active removal of macro-
algae has been suggested on reefs with reduced herbivory in associa-
tion with coral reef restoration efforts to improve chances of coral
survival while coral fragments establish (Ceccarelli et al., 2018).

Most reef restoration projects are expensive and require exten-
sive time spent cleaning algae from introduced structures such as
coral nurseries (Frias-Torres & van de Geer, 2015) and artificial reef
modules (Williams et al., 2019), often due to the lack of healthy her-
bivorous fish populations. With their fused beaks, parrotfishes are
particularly efficient at removing algae, consequently freeing up space
for coral recruits and reducing coral-algal interactions (Abelson
et al., 2016b; Bellwood et al., 2004; Ogden & Lobel, 1978), either
through targeting algae directly (Adam et al., 2018) or indirectly while
feeding as microphages (Clements et al., 2017). Although seemingly
less clear in the Pacific (Russ et al., 2015), in the Caribbean there are
evident relationships between parrotfish biomass and the abundance
of large-sized individuals with macroalgal cover (Shantz et al., 2020;
Williams & Polunin, 2001), and consequently restoring parrotfish
populations is often the focus of conservation initiatives in the west-
ern Atlantic (Jackson et al., 2014). Nonetheless, it is necessary to
rebuild the entire herbivorous fish guild, including macroalgae-eating
browsers to keep algae communities in an early successional stage
(Adam et al., 2015; Burkepile & Hay, 2010; Cheal et al., 2010). For
example, the reversal of an experimentally induced algal phase shift
was attributed to the batfish Platax pinnatus (Linnaeus 1758), a spe-
cies not previously classified as a conventional grazer, whereas grazing
from parrotfishes and other key herbivorous species had little impact
on direct removal of macroalgae (Bellwood et al., 2006). Additional
fishes within the herbivorous guild continue to be identified in both
the Pacific and Caribbean faunas (Tebbett et al., 2020). Non-fish spe-
cies such as urchins are also functionally important grazers on many
reefs (Edmunds & Carpenter, 2001); thus, a diversity of fish and inver-
tebrate grazers is advocated to promote restoration success.

In an marine protected area (MPA) at Cousin Island in the Sey-
chelles, coral fragments were set up to grow at a coral nursery site

located near a healthy local reef, aiming to reduce cleaning costs
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during the first phase of coral gardening prior to coral transplantation.
The presence of reef fishes removing the nursery of biofouling organ-
isms, such as algae and invertebrates, reduced the usual cleaning time
by 60% (Frias-Torres et al., 2015). This trophic facilitation has signifi-
cant implications for coral reef restoration projects in terms of cost-
effectiveness (Toh et al., 2013). During a different study at the same
MPA, restoration structures were filmed to investigate the importance
of grazers and to test a novel cleaning station technique (Frias-Torres
& van de Geer, 2015). Within 48 h of nursery rope structures being
placed at the experimental site, all biofouling reef algae had been
removed by herbivores, therefore eliminating the need for mainte-
nance-cleaning and the risk of coral shading by macroalgae. The bene-
fits herbivorous fish species provide by reducing algal competition are
thought to outweigh any damage to juvenile coral recruits and coral
fragments caused by intense grazing activities (see also the section
“Corallivory”), at least on natural reefs (Mumby, 2009). Moreover,
grazing opens new settlement space for coral larvae to colonise
(Doropoulos et al., 2016), thus facilitating natural ecological recovery
processes.

Although the reduction in fishing pressure to protect herbivorous
fish stocks is often a key management step to increase reef resilience,
the enhancement of grazers has also been proposed as a complemen-
tary method to reef restoration (Abelson, 2006). Typically this is
achieved through marine reserves, but region-wide fishing bans on
herbivores are increasingly being utilised (Cox et al., 2013; O'Farrell
et al, 2015). Although the recovery of parrotfishes can be rapid
(<5 years, O'Farrell et al., 2015), the re-introduction of grazers by
releasing fish larvae on restored, but recruitment-limited, reefs has
been suggested as a useful management technique in accelerating
stock recovery and increasing herbivory (Abelson et al., 2016b). In a
modelling study, different simulated scenarios of fish stock enhance-
ment predicted that fish restocking could substantially increase the
success of coral reef restoration projects. Restocking was shown to
lead to enhanced coral cover and grazing fish density while reducing
macroalgal cover in a significantly shorter amount of time when com-
pared to restoration without restocking interventions (Obolski
et al., 2016). Nonetheless, restocking remains a logistically challenging
management option, and field tests are lacking. For example, post-set-
tlement mortality of fish larvae needs to be addressed before
attempting restocking activities, as restored reefs with limited food or
shelter from predators may not be adequate for supporting juvenile
communities (Almany & Webster, 2006; Booth & Hixon, 1999;
Forrester, 1990; Juanes, 2007).

Most fish and coral restoration interactions are considered to be
beneficial; nonetheless, certain fish species are known to have delete-
rious effects on restoration success and create considerable chal-
lenges for reef managers (Forrester et al., 2012). Herbivorous
damselfishes are well known for their effects on coral colonies, and
are often among the first fish groups to colonise restored reefs
(Schopmeyer & Lirman, 2015). Within their territories, damselfishes
may intentionally bite and damage live coral polyps to promote the
growth of the algae they consume on the coral skeleton (Ogden &

Lobel, 1978), which becomes a major issue on restoration projects
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where coral fragments are already fragile (Ladd et al., 2018; Williams
et al., 2019; Table 1). For example, Isopora palifera colonies
transplanted within territories of the white damsel Dischistodus
perspicillatus (Cuvier 1830) eventually died due to the metabolic cost
of combating algal smothering (Potts, 1977). When coral fragments
were transplanted inside and outside Australian gregory (Stegastes
apicalis) (De Vis 1885) and dusky farmerfish (Stegastes nigricans) (Lac-
epéde 1802) territories, transplant mortality was higher inside the ter-
ritories than in control areas (Casey et al., 2015). Schopmeyer and
Lirman (2015) studied the effects of territorial damselfish on a coral
reef restoration project in Florida. Immediately following, and even
during, the outplanting of nursery-reared A. cervicornis colonies,
damselfishes colonised the restored sites and established algal mats
within the first 6 months with large coral colonies experiencing up to
45% colony mortality. Williams et al. (2019) found that after the first
few weeks of coral transplantation, it was critical for coral survival
that the large D. perspicillatus and Cross's damsel Neoglyphididon crossi
Allen 1991 were actively managed to prevent algal overgrowth.
Although algal-farming by damselfishes is a natural ecological pro-
cess on coral reefs, locating restoration programmes in areas where
predators of damselfishes are present in higher densities (e.g., MPAs)
may mitigate the negative effects of algal farms through predation
and indirectly reduce the incidence of coral disease (Vermeij
et al., 2015). The removal of territorial damselfishes (Casey et al., 2015;
Schopmeyer & Lirman, 2015) may also help to ensure their presence
does not compromise restoration success (Table 2). Transplanting a
diversity of coral species is likely to be beneficial and may additionally
minimise the impact of damselfishes. A prevalence of fast-growing
branching corals may attract damselfishes away from slower-growing
corals that may be less able to compete with algal growth stimulated
by damselfish gardening. It is, however, important to note that
impacts will vary depending on geographic location and damselfish
species. Although territorial damselfishes are a significant challenge to
coral reef restoration efforts, particularly in the Caribbean, their
effects are likely to be context-dependent (Ladd et al.,, 2018). For
instance on Indo-Pacific reefs, territorial damselfishes can exclude cor-
allivores from their territories (Gochfeld, 2010; White & O'Donn-
ell, 2010), resulting in increased coral growth, diversity (Glynn &
Colgan, 1988) and recruitment (Gleason, 1996) in these areas. Under-
standing the interactions between populations of farming
damselfishes, their predators, and whether planting a diversity of coral
morphologies can influence the impact of damselfish territoriality dur-
ing restoration is an important area for future study across a range of

geographical locations.

4 | NUTRIENT PROVISION

In addition to herbivory, there are other mutualistic relationships that
may benefit restoration activities. For instance, fishes can provide pri-
mary producers with some of the nutrients they need through excre-
tion of ammonia and faeces, thus influencing primary production and
community structure (Allgeier et al., 2013, 2014; Benkwitt et al., 2019;
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Burkepile et al., 2013). Coral reefs are primarily nutrient-limited, and
yet they are some of the most productive ecosystems on the planet
(Davis et al., 2009; Szmant-Froelich, 1983). Fish communities store
and supply substantial quantities of nitrogen and phosphorus in the
form of excretion and egestion (Allgeier et al., 2017). This nutrient
source is crucial in supporting coral reef productivity (Allgeier
et al, 2014; Holmlund & Hammer, 1999), and will increase with
increasing fish abundances on restored reefs. Nutrients may be trans-
located from other sources such as seagrass beds as coral fishes for-
age on adjacent habitats during the night but return to shelter in coral
colonies during the day, thus creating nutrient hotspots (Meyer &
Schultz, 1983). For example, the nutrient-rich gill excretions and phos-
phorus-rich faeces of grunts were found to increase the growth of
Acropora and Porites coral colonies (Meyer & Schultz, 1985), and high
nutrient delivery has been associated with increased herbivorous
activity and reduced algal cover on outplanted coral colonies (Shantz
et al., 2015). Holbrook et al. (2008) found a mutualistic relationship
between Pocillopora corals and vyellowtail dascyllus (Dascyllus
flavicaudus) Randall & Allen 1977 communities, with a positive rela-
tionship between fish biomass and coral growth. They suggested that
biomass of associated fishes and coral colony openness influenced
colony fitness. Colonies that hosted larger numbers of fishes received
a better supply of nutrients and grew quicker. Similarly, closed colo-
nies that had limited water flow between branches retained more
fish-derived nutrients, thus experiencing enhanced growth. This is rel-
evant when selecting coral colonies for transplantation (see also the
section “The Role of Habitat and Seascape Complexity”) to maximise
potential benefits from such mutualistic relationships while
maintaining a high transplant diversity (Table 2).

To date, only a handful of studies have tested the benefit of fish-
derived nutrients on restored coral fragments and colonies (Table 1).
Bongiorni et al. (2003) compared growth and gonad development in
coral fragments suspended near a fish farm and in an oligotrophic con-
trol site. Despite nutrients potentially being deleterious to corals by
enhancing algal growth and increasing water turbidity, Bongiorni
et al. (2003) found that proximity to the fish farm greatly enhanced
growth and reproductive activity of Acropora eurystoma and
Stylophora pistillata. Coral fragment growth rates were 3 to 4 times
higher at the nutrient-enriched site, and oocyte numbers were signifi-
cantly higher, compared to the fragments located at the reference
site. Shafir et al. (2006) also suggested that placing their suspended
coral nursery 10 m from a large fish cage containing gilthead sea-
bream Sparus aurata Linnaeus 1758 was instrumental in its success
and recommended placing coral nurseries within nutrient-rich envi-
ronments to enhance coral growth, shorten nursery incubation time
and reduce costs and threats of predation and competition. Such ben-
efits may extend to fishes repopulating restored reefs.

The benefits of enhanced nutrient supply by fishes may be con-
text-dependent, as high levels of fish excretions can trigger shifts to
algal-dominated states on coral-depauperate reefs as opposed to
coral-dominant reefs (Burkepile et al., 2013). Furthermore, whereas
natural enrichment tends to enhance coral growth, the addition of

nutrients by means other than fish-associated processes is not

recommended as clear negative associations between anthropogenic
nutrient enrichment and coral reef health have been reported
(D'Angelo & Wiedenmann, 2014). The differential effects of natural
vs. anthropogenic nutrients on corals are attributed to a range of dis-
tinctions including nutrient identity (ammonium and phosphorus vs.
nitrate) and concentrations (discrete pulses vs. heavy discharge)
(Shantz & Burkepile, 2014). Anthropogenic nutrification increases turf
algae competition over corals (Vermeij et al., 2010) and affects sus-
ceptibility of corals to bleaching (Wiedenmann et al., 2013). In a field
experiment, Zaneveld et al. (2016) demonstrated that nutrient pollu-
tion can increase coral disease, which was exacerbated at high tem-
peratures, and aggravate the impact of corallivory on coral survival. In
their study, although parrotfish predation had a negligible impact on
Porites coral survival in control plots, coral survival was significantly
impacted in nutrient-enriched plots with 92% of Porites losing tissue
through predation resulting in 62% mortality (Zaneveld et al., 2016).
Overall, studies on the effects of added nutrients on reefs are con-
flicting (Koop et al., 2001; Lapointe, 1997), and effects are likely to be
context-dependent (Mumby et al., 2006b; Sotka & Hay, 2009). Thus,
further work is required to quantify benefits of fish excretions for
coral growth in restoration projects. This could be of particular impor-
tance to restoration managers as enhanced fragment growth may
reduce the high costs and setbacks associated with coral gardening.
Nonetheless, although increased nutrients may stimulate coral growth
in some cases, algal overgrowth remains one of the main concerns on
coral-poor reef restoration sites (Bowden-Kerby, 2001; Yap, 2004;
Young et al., 2012).

5 | CORALLIVORY

Corallivorous fishes such as butterflyfishes (Chaetodontidae) can be
positively affected by the addition of live coral cover due to increasing
food availability (Cole & Pratchett, 2014; Hourigan et al., 1988). Taira
et al. (2017) reported that coral nurseries were adequate habitats for
juvenile Chaetodon octofasciatus, where their densities were higher
than at nearby natural reefs. Predation on coral, while providing an
important food source for reef fishes, is however a concern in reef
restoration projects, where new coral transplants are particularly vul-
nerable to native predators and other disturbances (Edwards &
Gomez, 2007; Jayewardene et al., 2009; Omori, 2005).

Consumers of coral tissue differ in their feeding strategies and
effects on coral fitness; butterflyfishes remove single coral polyps
without affecting the underlying skeleton. In contrast, parrotfishes,
pufferfishes, triggerfishes, filefishes and wrasses also remove part of
the underlying skeleton, with a few species acting as bioeroders by
actively consuming the dead coral matrix (Rotjan & Lewis, 2008).
Therefore, corallivory by reef fishes may adversely affect restoration
success. For example, intense corallivory by Scaridae and
Chaetodontidae caused major tissue loss and coral detachment in
transplanted Stylophora coral fragments (Horoszowski-Fridman
et al., 2015), and high Acropora formosa fragment mortalities at a coral

nursery site were attributed to severe predation by fish and other
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corallivores (Xin et al., 2016). The coral-feeding butterflyfish Cha-
etodon capistratus Linnaeus, 1758 was also reported to increase the
spread of black-band disease to coral fragments (Aeby &
Santavy, 2006).

Although the transplantation of large coral fragments and mature
colonies remains the most commonly used method of coral reef resto-
ration, the need for sexually propagated corals has been increasingly
recognised (Chamberland et al., 2015; Villanueva et al., 2012). Out-
planting coral juveniles raised from sexually derived larvae, as
opposed to using more cost-effective clonal fragments, may help con-
serve the genetic diversity of restored coral populations
(Baums, 2008). Nonetheless, translocating juvenile corals remains
challenging as they are particularly at risk of damage from cor-
allivorous fishes (Page et al., 2018). For instance, in a study investigat-
ing the susceptibility of coral recruits to predation by using settlement
plates, parrotfish abundance was correlated with coral recruit mortal-
ity, attributed to accidental grazing, whereas butterflyfish abundance
was correlated with juvenile coral mortality, attributed to predation
(Penin et al., 2010). Nonetheless, both survival and growth rates of
juvenile corals increase with transplant size and time spent at a nurs-
ery prior to transplantation (Guest et al., 2014; Ligson et al., 2020).
Augmenting the size of juvenile corals ex situ, thus decreasing size-
dependent mortality due to predation, may be preferable when con-
sidering optimal transplant size, despite the added maintenance cost
(Raymundo & Maypa, 2004; Toh et al., 2014).

Baria et al. (2010) measured the potential of caging newly
transplanted juvenile Acropora tenuis corals to reduce post-trans-
plant predation. Juvenile transplants protected by a cage had
higher survival rates than the transplants that were not caged.
When attempting to mass culture juvenile corals for restoration,
Nakamura et al. (2011) similarly experimented with coral juveniles
placed within cages and without cages. They found that coral
growth at the transplantation site was highest when transplants
were secured within unshaded cages that protected them from
corallivores. Nonetheless, results from a Kenyan nursery site
showed that caging fragments significantly increased fouling of
corals, creating considerably more damage than occasional cor-
allivory (Knoester et al, 2019). Although excluding coral-eating
fishes may be beneficial in the early stages of a restoration project,
this is often logistically difficult except at small scales (<50 m?,
Table 1) and would also exclude other fishes that remove coral-
eating invertebrates such as Drupella snails or that reduce macro-
algae. The benefit of algal removal by fishes overall appears to
outweigh occasional coral damage (Venera-Ponton et al., 2011),
thus suggesting against the installation of expensive caging
apparatus.

Coral species vary in their resistance to grazing, and different
coral predators have different prey preferences and feeding modes
(Cox, 2013; Hixon, 1997; Rotjan & Dimond, 2010; Rotjan &
Lewis, 2008). Studies using natural reef systems have demonstrated
selectivity among corallivores (Burkepile, 2012; Roff et al., 2011) and

where there are fewer palatable coral species corallivory can increase
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dramatically. Consequently, surveys of existing corallivore species,
their dietary preferences and specific tolerances of coral fragments to
these species are factors to consider when developing restoration
scenarios. The most commonly preyed-upon corals include Acropora,
Pocillopora, Montipora and Porites species (Rotjan & Lewis, 2008), and
introducing alternative coral genera may help mitigate fragment dam-
age. Nonetheless, corallivorous populations have their place on
restored reefs as on natural reefs, and thus the transplantation of a
broad range of coral species, including a range palatable to cor-
allivores, during restoration would be beneficial. Understanding the
food preferences of existing corallivore species would also allow
transplantation of some species resistant to coral predation and/or
not selected by corallivores to minimise the overall negative impact of

corallivorous fish assemblages.

6 | PREDATORY FISHES

There has been a sharp decline in transient apex predator abundance
in most reef ecosystems (Baum et al., 2003; Essington et al., 2006;
Jackson et al., 2001; Myers & Worm, 2003). Predatory fishes are typi-
cally highly valued by fishers, and their densities have been signifi-
cantly reduced on many reefs, potentially leading to top-down effects
(Baum & Worm, 2009; Heithaus et al., 2008; Myers et al., 2007). For
example, predators are important in preventing prey species such as
territorial  damselfishes from  proliferating  (Schopmeyer &
Lirman, 2015). Corallivorous invertebrates such as the crown-of-
thorns starfish (Acanthaster planci), the gastropod Coralliophila
abbreviata and the bearded fireworm (Hermodice carunculate) can also
negatively affect corals species used in restoration projects (Dulvy
et al., 2004; Miller et al., 2014) unless removed or kept in check by
predatory fishes (Ladd & Shantz, 2016; Williams et al., 2014).
Although predatory fishes play an important regulatory role on
restored reefs by reducing predator threats on vulnerable
transplanted coral fragments and increasing catches for fishers, they
have seldom been investigated in the context of reef restoration, with
most of the focus on herbivorous fish populations. Indeed, only a
handful of studies have reported the attraction of predatory and tran-
sient fish species to restoration sites, and these results have all been
qualitative in nature (Salvat et al., 2002; Raymundo et al., 2007; Fadli
et al., 2012; Frias-Torres et al, 2015; Table 1). This is despite the
rebuilding of fisheries being an aim of restoration projects, either
explicitly or implicitly. Regardless of local species richness, functional
roles on reefs may be performed by only a few species (Hughes
et al., 2017), thus restoration of functional roles may be a more impor-
tant goal for the return of top predators than restoration of species
diversity per se. As the number of restoration projects increases glob-
ally, there is an urgent need to assess the impact of different restora-
tion methods on the behaviour of marine predators as some designs,
such as biorock-associated electric fields, can deter and reduce their
feeding rates (Uchoa et al., 2017). Predatory fishes have a vital role in

maintaining the ecological balance on reef ecosystems and structuring
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coral fish assemblages; therefore, the replenishment of their
populations and the maintenance of natural behaviour patterns should
remain a priority for restoration projects (Ritchie et al., 2012).

With some similarities to coral reef restoration, MPAs and marine
reserves aim to maintain ecosystem functions and increase marine
habitat quality (Gell & Roberts, 2003; Halpern, 2003; Lester
et al., 2009), and may provide insight into the effects of restoration on
predatory fishes. Coral reef restoration programmes set up within
protected areas may reap their combined benefits on fish recovery
(Abelson et al., 2016a). Several studies have demonstrated that
protected areas can have positive effects on fish predators, even in
small reserves (Clemente et al., 2011; Pilyugin et al., 2016; Russ &
Alcala, 2004). Therefore, restored and protected coral reefs could pro-
vide visitation sites to large transient predatory species (e.g., jacks)
and territories for resident predators (e.g., groupers and eels). It is
important to note, however, that reserve benefits to transient species
are more likely to be related to protection from fishing and prey avail-
ability rather than habitat structure (Roberts & Hawkins, 1997). None-
theless, some restored reefs also experience a certain degree of
protection due to the addition of artificial structures to which the
coral fragments are attached, obstructing net-based fishing and thus
discouraging certain practices, such as trawling (Edwards &
Gomez, 2007). The effect of such protection on stand-alone restora-
tion projects may be limited for wide-ranging species due to the
small-scale nature of most reef restoration projects relative to the
home ranges of many of the large, high-value predatory fishes (Green
et al., 2015). A reduction in fishing pressure on large fish species,
alongside coral transplantation efforts, is obviously recommended to
aid restoration of functional ecosystem food webs.

Although increased habitat complexity influences the abundance
of small-bodied resident predators, and to some extent the abundance
of transient predators (see the section “The Role of Habitat and Sea-
scape Complexity”), it is more likely that the increase in prey abun-
dance will be the main attractant to piscivorous fishes with large
home ranges (Grossman et al., 1997; Newman et al., 2006; Wickham
et al., 1973). If reef fish and invertebrate densities benefit from resto-
ration, foraging opportunities for predators will increase in the long
term. Habitat complexity may also affect the hunting efficiency of reef
predators, but this is largely unexplored. Several recent studies inves-
tigating the effect of reef degradation on predators have highlighted a
higher abundance and diversity of reef piscivores on recovering reefs
compared to degraded reefs due to the availability of higher-quality
prey (Hempson et al., 2018a, 2018b). On degraded reefs predators
feed lower down the food chain, potentially leading to lower nutrition,
survival, fecundity and growth (Hempson et al., 2017). Reef restora-
tion may, therefore, be able to reverse the effects of trophic down-
grading by increasing prey availability and improving predator diet. As
most restoration projects ultimately aim to restore top-down trophic
interactions and positively affect species of commercial importance,
research is urgently needed to understand the factors which will influ-
ence the return of large piscivorous fishes. A comparison of foraging

success by predators with differing prey pursuit or ambush behaviours

on restored reefs would be worth examining, particularly in relation to

reef design.

7 | CONCLUSION

This review considers fish-benthic interactions in the growing field of
reef restoration research, which has received much less attention than
research on effective outplanting of corals, and a number of immedi-
ate questions for future research are highlighted (Table 3). In expan-
ding these research questions for coral reef restoration, it is suggested
that there is an initial requirement to first understand whether resto-
ration projects can return fish assemblages to their original species
composition, or whether restored reefs are likely to support altered or

novel fish assemblages. Such altered fish assemblages may function in

TABLE 3 Future key research questions surrounding the recovery
of fish assemblages in coral reef restoration efforts

Key research questions

Introducing habitat Through what mechanisms does the level of
complexity habitat complexity generated by coral
transplantation affect both consumptive and
non-consumptive predator-prey interactions
during the process of rebuilding fish
assemblages?

How important is shade provision in facilitating
the return of fish assemblages on restored
reefs?

How does reef restoration design influence the
abundance and diversity of cryptic species?

Role of herbivorous As a key ecological process, how does herbivory
fishes of different species (specifically grazing
intensity) change on a restored reef over time?
How can the diversity of coral transplant
morphologies be manipulated to reduce the
detrimental impact of territorial damselfishes?

How can the known benefits of fish excretions
on coral growth be utilised to benefit reef
restoration projects, in particular coral

Nutrient provision

gardening?

Corallivory How does food preference of existing corallivore
fishes affect restoration success?

Predatory fishes How can reef design (e.g., spacing and a variety

of coral transplants) be altered to encourage
the return of large predatory fishes?

What is the relationship between specific reef
designs and the different predatory behaviours
they facilitate, e.g., ambush, pursuit?

Over-arching
questions

Which key factors influence whether restoration
projects return fish assemblages to their
original species composition or generate
conditions likely to support novel fish
assemblages?

How do patterns of fish recovery vary with
biophysical gradients and across biogeographic
regions?
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different ways to natural reefs (e.g., different predator-prey interac-
tions). The timeframe over which these changes occur also warrants
attention and therefore should be reflected in the monitoring of
restored reefs. On healthy reefs, specific guilds of fishes can have
both positive and negative effects on corals, and this is also true for
restored reefs. Understanding these interactions is likely to be critical
in large-scale efforts to increase coral cover through transplants.

With the global challenges currently facing coral reefs, the
requirement to explore their restoration has never been greater. Fur-
thermore, it may not be possible to fully restore reefs to pristine con-
ditions, creating a pressing need to understand the novel reef
ecosystems that arise through restoration. Irrespective of whether
original species composition and diversity are attainable, understand-
ing the interactions between coral restoration and fish assemblages
will be vital to ensure that anthropogenically manipulated reef ecosys-
tems still function and provide ecosystem services. Much work has
been focused on the benthic component of reef restoration, although
very little is known concerning the impact of restoration on fish
assemblages in the short and long-term, a clear omission given the
integrated relationship between fishes and their reef habitat. As a
greater understanding of the interactions between reef restoration
and fishes is gained, and as fish-focused research is integrated into
the core of restoration efforts, the effectiveness of this important
management tool will increase significantly.
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